Implementation of Pin Point Landing Vision Components
in an FPGA System

Arin Morfopolous, Brandon Metz, Carlos Villalpando, Larry Matthies, Navid Serrano
Arin@)jpl.nasa.gov, Brandon.metz@jpl.nasa.gov, Carlos.Villalpando@)jpl.nasa.gov, Larry.H.Matthies(@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Navid.Serrano@adventbt.com

Abstract— Pin-point landing is required to enable missions
to land close, typically within 10 meters, to scientifically
important targets in generally hazardous terrain. In Pin Point
Landing both high accuracy and high speed estimation of
position and orientation is needed to provide input to the
control system to safely choose and navigate to a safe
landing site. A proposed algorithm called VISion aided
Inertial NAVigation (VISINAV) has shown that the
accuracy requirements can be met. [2][3] VISINAV was
shown in software only, and was expected to use FPGA
enhancements in the future to improve the computational
speed needed for pin point landing during Entry Descent
and Landing (EDL). Homography, feature detection and
spatial correlation are computationally intensive parts of
VISINAV. Homography aligns the map image with the
descent image so that small correlation windows can be
used, and feature detection provides regions that spatial
correlation can track from frame to frame in order to
estimate vehicle motion. On MER the image Homography,
Feature Detection and Correlation would take
approximately 650ms tracking 75 features between frames.
We implemented Homography, Feature detection and
Correlation on a Virtex 4 LX160 FPGA to run in under
25ms while tracking 500 features to improve algorithm
reliability and throughput. '

TABLE OF CONTENTS

1. INTRODUCTION
2. THE VISINAYV SYSTEM
3. FPGA SYSTEM OVERVIEW
4. MEMORY INTERFACE
5. HOMOGRAPHY
6. FEATURE DETECTION
7. NORMALIZED CROSS CORRELATOR
8. FUTURE AND RELATED WORK
9. RESULTS
10. SUMMARY
ACKNOWLEDGEMENTS
REFERENCES
BIOGRAPHY

O XX IINN DR WWNN -

1. INTRODUCTION

NASA's roadmap for solar system exploration includes
missions to the Moon, Mars, Europa, Titan, comets and

'978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper #1157, Version 1, Updated September 1, 2010

asteroids, which requires an accurate estimation of position
to enable safe landing near the desired science targets.[1]

Previous robotic lander missions have used a combination
of inertial measurements from accelerometers and
gyroscopes and velocity measurements from Doppler radar.
The resulting landing ellipse is quite large because of
uncertainty in the initial position at the start of EDL and the
accumulation of measurement error during integration. For
Mars, the landing ellipse has been on the order of 100km,
and on the Moon the landing ellipse has been on the order of
1km. Absolute measurement of position via GPS or similar
satellite arrays will not be available near non-Terrestrial
solar system bodies for the foreseeable future.

Camera measurements can reduce the uncertainty in
touchdown position. Features detected from on-board
descent imagery can be matched against prior images taken
from orbit (Mapped Landmarks) to bound the absolute
uncertainty, and features can be detected and tracked frame
to frame during landing to reduce relative uncertainty
(Feature Tracking) for position, velocity and attitude.

These measurements would be used in addition to the
standard array of navigation tools, and JPL's implementation
of such a system is called VISion aided Inertial
NAVigation, or VISINAV. [2]

In September of 2007 JPL showed that VISINAV could
achieve calculated position errors under 10cm and velocity
errors under 20cm/sec. Tests were performed using
parachute drops, sounding rocket launches and prior
planetary landing sequences to show that the VISINAV
system was robust to a large range of altitudes, attitude
dynamics, lighting conditions and scene appearance
changes. [3]

VISINAV was implemented in C++, and timing
experiments with the sounding rocket data set showed that
more than 50 mapped landmarks could be generated in 2
seconds and that the persistent feature tracker could track
more than 70 features in 100 ms on a 400Mhz R12000 SGI
02. At this rate the algorithm would be fast enough to
support real-time landmark mapping and feature tracking
during descent and landing, but a flight CPU might be
significantly slower than the 400MHz R12000 and thus
would not be able to hit the timing requirements desired[2].
Additionally, 100% of the CPU may not be available for
VISINAYV to use during EDL. Improvements were desired

to offload the CPU of this computationally intensive task by
implementing key components in an on-board FPGA. By
shifting the heavy processing to the FPGA, we can also
improve the robustness and precision of VISINAV by
processing many more than 50 mapped landmarks and 70
features.

The implementation of VISINAV components within an
FPGA are the focus of this paper.

2. THE VISINAYV SYSTEM

The computationally intensive portions of the VISINAV
algorithm lie in

a) Feature detection

b) Image scaling and transformation, or Homography

c) Feature matching via a 2D spatial correlator.

d) Feature matching via a Fast Fourier Transform (FFT).
e) Kalman filter state updates.

Components (a), (b) and (c) were chosen for implementation
in an FPGA.

Feature matching via a Fast Fourier transform has not yet
been included because in the VISINAV algorithm it is only
done once during the Mapped Landmark phase, regardless
of the number of features tracked. Nonetheless it is
expected to be included during future development.

Kalman filter state updates was not included for FPGA
implementation because it did not take a significant portion
of the total computation time and because it was less well
suited to a parallel or pipelined implementation.

The VISINAV system itself is extensively described in
previous literature[4][5][6]. The only details of the
VISINAYV system described here will be the behavior of the
components that were chosen for implementation in an
FPGA.

This paper will present an FPGA architecture that includes
implementations of image Homography using bilinear
interpolation, a feature detector using a Harris operator, and
a 2D spatial correlator using a Normalized Cross Correlator
(NCC), as well as the data flow for each module.

3. FPGA SYSTEM OVERVIEW

The development FPGA board is an Alpha Data ADM-
XRC4 containing a Virtex 4 LX160, a PCI bus interface and
6 independent ZBT SSRAM 4MB banks. The memory and
PCI bus interfaces are common across this design and a
related JPL project [7] to handle rover image processing for
navigation.

For the flight system we expect that we would be using a
Rad Hard by design Virtex 5 FXI130T (part
#XQR5VFX130) and a single large bank of SDRAM, on the
order of 512MB to 4GB. The FPGA design supports the
expected transition to this flight FPGA part and SDRAM
interface.

The key design considerations for the FPGA modules were
maximizing speed and minimizing FPGA resource
utilization. FPGA resources are finite and the demands on
resources will only grow as the flight date approaches and
more capabilities are added.

Each FPGA module was designed to be fully pipelined so
that the speed will be constrained only by the speed that
imagery can be loaded into the FPGA and by the clock
speed of the FPGA.

Each component- Homography, Feature detection and
Normalized Cross Correlator (NCC)-is called an engine, and
is started by the CPU by register reads and writes over the
PCI bus. Once running, each engine runs to completion and
notifies the CPU via a PCI interrupt of its completion.
Interactions between CPU and FPGA are kept to a
minimum to optimize CPU idle time (and thus free for other
tasks) and PCI bus idle time.

Expected design conditions:

a) 512x512 input descent imagery, grayscale, 8 bit.
b) 2048x2048 input orbital map image.
¢) Up to 500 features detected in a single descent image.

d) Up to 500 features used during Persistent Feature
Tracking.

e) 15x15 Normalized Cross Correlator template size to be
used for matching.

f) Input imagery will be stored in on board memory
before use. FEach engine has sole control over the
imagery while it is running.

g) Minimum performance of 1Hz for VISINAV with the
improvements in performance from the FPGA.

Note that 500 features tracked are far greater than in the
standard software-only version of VISINAV. Both speed
and performance are expected to improve as a result of the
FPGA acceleration.

Each FPGA block runs independently, and in the VISINAV
algorithm only one FPGA block will need to run at a time.
There is no advantage to running Homography and Feature
detection simultaneously, or Feature Detection and
Correlation simultaneously, because each subsequent
algorithm depends on the completion of the prior.

4. MEMORY INTERFACE

There are essentially 4 FPGA elements that can access on
board RAM: PCI bus on behalf of the CPU, Homography,
Harris Detector, and the Normalized Cross Correlator.

The imagery is separated into different on-board memory
banks in order to maximize throughput, so that input data
and output data are all independent accesses to memory.

A

Virtex 5fx130t
SRAM
<—>|PORTO [+
SRAM
Control |]
g Registers Homography il
w
ats SRAM
C Vision ! | —>
(%] engine to FORT2
Control - bank
Registers Feature mapping | «—»| SRAM |
Detection PORT 3
<> SRAM |
N 4
Control Normalized =
Registers Cross SRAM
Correlation <> PORT 5[+

1. Data flow for each engine to and from on board
memory. The bank mapping is handled by an internal
state machine dependent on PCI bus requests and FGPA
engine states.

Each engine has different memory use profiles:

The PCI bus will access a single bank at a time to write in a
new image or to read out processed data.

The Homography will read a single raw descent image from
memory and write a single rectified image to memory.

The Feature detector will read from the raw descent image
or from the rectified image (both inputs will be used at
different points in the VISINAV algorithm) and will write
feature coordinates out.

The Normalized Cross Correlator will read templates from
the rectified descent image, read coordinates for features
within the map window, read sub-windows from the map
image at the coordinates of features detected, and write
coordinates of the best match between templates and sub-
windows out.

There are 6 independent banks of ZBT SSRAM on our
development board. In each case listed above there are
sufficient banks to allow a module to have an independent
SRAM bank for each read or write operation. This
simplifies design, but for the flight mission there will likely
only be one large bank of SDRAM, so in that case an arbiter

would be required to share access of the single bank across
multiple read/write agents. This arbiter/agent design is
currently under development at JPL. In the current design
any module that is running has exclusive control the
memory banks it uses until it completes.

Each module was written to be a stand-in replacement for its
equivalent software function. Unfortunately the
implementation is slightly different for the FPGA so that the
results are not identical, bit for bit, between the software and
FPGA versions of Feature Tracking and Normalized Cross
Correlation. Substantial testing with different data sets will
be required to validate that the results are equally stable and
equally valid.

5. HOMOGRAPHY

2D spatial correlation is not scale or rotation invariant, so
any images being matched must first be scaled and rotated
properly. This applies to both the Mapped Landmark and
the Feature Tracking algorithms. For the Mapped Landmark
algorithm sub-windows around a feature in the descent
image will be scaled and rotated to align with the map
image. For Feature Tracking the sub-window around a
feature in the descent image will be scaled and rotated to
align with the prior descent image. Homography can run
across the entire image in one pass, but we rectify the
coordinates of the features found separately in software.

The descent image is loaded into an SRAM bank, then a 3x3
transformation matrix is loaded into the FPGA registers and
then the Homography engine is started.

The Homography engine loads the descent image from the
SRAM and remaps it on the fly, writing the rectified output
pixels out to a separate SRAM bank.

The transformation between output image coordinates and
input coordinates are defined by:

x2 = (h1*x1 + h2*yl + h3) / (h7*x1 + h8*yl + h9) (1)
y2 = (hd*x1 + h5*yl + h6) / (h7*x1 + h8*yl +h9) (2)

Where hl to h9 are the elements of the transformation
matrix, and x2,y2 are the coordinates in the unrectified
descent image. Input values x1 and y1 are the coordinates
in the rectified descent image. [8][9]

The computation is fully pipelined, so on each new clock a
new coordinate is computed.

x2 and y2 are referenced in the input image to read the 4
neighboring pixels surrounding the floating point address

(x2,y2).

These neighboring unrectified input pixels Pa, Pb, Pc and
Pd are weighted to produce the rectified output pixel Pr at
(x1,y1) in the output image.

B B (I, V(P (1=, V4 BV,)W,)
P = 756 = 3)

Where W, is the weight along the x-axis and W, is the
weight along the y axis, which corresponds with the
fractional portion of the (x2,y2) coordinates. Figure 2
graphically illustrates Equation 1. The dark dot represents
the projected coordinate (x2,y2) of the rectified pixel into
the raw image frame.

Wi

w | o

1-Wy
O O
Pe I‘—’| Pd
1-Wx

Figure 2: Homography bilinear interpolation example

Note that the equation (3) and method of bilinear
interpolation is identical with that used in Rectification in
JPL’s Rover Navigation FPGA design [7]. The method of
determining (x2,y2) and thus W, and W, are of course
different.

ProjeFtion Pixel InState | oo\ Input
Engine agdress| Control [Tpiels| SRAM
5
N|X o
N |- o
Bilinear
s Weights Interpolation
. Engine
T
Output
Pl Bus Out State | Rectifidd] sram
Transformation Control | pixel
] [] Registers

Figure 3. Homography Block Diagram

Figure 3 shows the data flow to accomplish the equations
(1) (2) and (3). The Projection Engine creates the (x2,y2)
floating point coordinate and translates that into an integer
Pixel Address and a fractional W, and W, weight.

In State Control handles the interface with the SRAM to
read descent image data. It is synchronized with the
Projection Engine block to make sure the Weights and the
2x2 Pixel Block arrive together at the Bilinear Interpolation
Engine.

Out State Control handles the output to SRAM of rectified
pixels and keeps track of when all the output pixels are
completed.

6. FEATURE DETECTION

The VISINAV algorithm uses a Harris Detector to locate
features which can be matched to the map image or to prior
descent images. Harris was chosen because it is efficient
and because it generally extracts corners in textured areas of
images which are well suited to correlation-based tracking.

The Harris detector is fundamentally a corner detector,
finding areas with a large derivative in x and y. It functions
by considering a local window in the image and determining
the average changes of image intensity that result from
shifting the window by a small amount in any direction
(x,y)[10][11]. The change, E, for the small shift (x,y) can be
concisely written as:

E(X,y)= (X yY)M(x,y)")
Where:

AC
M =
A=0I/ox*al | ox

B=0al/6x*dl /0y
C=0l/8y*al /oy

)

The corner response function is given as:

F = Det(M) — k * Trace® (M) (6)

(0.0 [« = [l [[[le]—pcmo L LT T []00 |3
(N,0) (0,0) o) o] [Ao O [window
N2 LA | Ll 12102
Each line of the image is Q @ Q/i’
fed into the FPGA allal - h=Q3-a5 —>
° [(N,M) Q/]Qd y=Q7-Q1

Image — NxM in size

Three lines of the image are stored and the ix and
iy derivatives are taken. The window is shifted

with each new pixel clocked in.

X :A—>§ - |A1]Ag
I~ ..|AN

Y

|
I N pixels wide ———
X =B_>C ...|B1|Bo
& ..|Bn

|

|
X = C —» '~ ..C1C0
- ..|CN

o

Y

The product of the i*iy, ix*iy, and i,*i, derivatives are
stored within five shift registers N deep (N = image
width). The window shifts to the left after each pixel

clock.

—TATAl [o[112[7]0
A Ea3
—>Z x|[24(7]4]2 —>
113431
ol1(2[10
B8] [o[1]2[1]0
Bd [T3[2[3[7
—>Z x|214|7]4]|2 —» (S
113431
o[1(2[10
p== BUBBEE
—d [T[3[4[3]7
— x[21a714]2
Z 113431 — 5
o[1(2[10

Each 5x5 window is weighted by an
equidistant Gaussian distribution and then

summed over the entire window area. Sa, Sb

and Sc are scalar values.

det[] = BE-E—~0

trace] = BE—0

o] - kT —
k=0.05, F is the “score” of this pixel

location. If score > threshold, a feature
has been found.

Figure 4. Harris Detector Functional Diagram

The diagram above shows each main phase of the pipeline
starting with the insertion of the image, pixel by pixel into
the FPGA and resulting in F, the final score computed for
each pixel in the image.

There are 5 basic steps:

1. Compute ix and iy derivatives for each pixel in the
image.

2.

Queue five lines of the intermediate results ix*ix,
iy*ly and ix*iy as A, B and C respectively.

Weigh a 5x5 window of A, B and C by an
equidistant Gaussian distribution and sum the
window together.

Compute the determinant and trace of M to find the
score, F = Det — K* Tr*Tr. K is empirically
chosen to be 0.04 <K < 0.15 in literature [10] and
for this implementation is 0.05.

5. Apply a threshold to F, so that if F is above a
threshold then that pixel location is considered a
valid feature. Note the coordinate of the valid
feature.

The threshold is modified during run time to provide the
correct quantity of features in the scene. This will change
based on the contrast and texture available in the scene.
Too low a threshold will provide too many features to be
processed in time. Too high a threshold provides too few
features for good accuracy in the matching algorithms.

After a fixed delay to fill the internal queues, a score will be
produced after each successive clock. Failing scores are
discarded. Scores that are higher than the predetermined
threshold are recorded to SRAM.

7. NORMALIZED CROSS CORRELATOR

The Normalized Cross Correlator is based almost
exclusively upon the design by Zhang and Asari[12]. Our
implementation is a re-creation of the work described in that

paper.

The only customization is in the integration with the
VISINAYV system, in the interface to the memory banks, and
in adding a maxima finder to report the highest score and its
coordinates rather than every score across the image.

As the core design of the Normalized Cross Correlator is
unchanged from that of Zhang and Asari[12], only the
custom interface and control logic will be discussed here.

Reference | | sup-window Sub-window
Image “pr Normalized coordinates
SRAM Cross Et

Correlator
Score
i e Threshold
7

Template NCC_score

SRAM
Maxima Match_x
Finder Match_y

Sequence:

1. In software, load a 15x15 window from the
rectified descent image around each feature that
will be matched. Sum the intensity values across
the 15x15 window and save as scalar EnergyT.

PCI
Bus

Subtract the DC component over the window and
convert to the log2 domain. Call the resulting
15x15 window “T”.

2. In software, determine the sub-window of the map
image or the prior descent image that will be
searched for a match. Call the coordinates of this
subwindow “wCoord”, and the sub-window itself
the “reference image”.

3. Load the window T, the scalar EnergyT, and the
sub-window coordinates wCoord to the FPGA.

4. In the FPGA, load the sub-window “F” from the
reference image from on board SRAM using
wCoord and feed into the Normalized Cross
Correlator. The output will be an NCC score.

5. Save the coordinates of the maximal NCC score. If
no score falls above a threshold then report no
match detected.

Although this is a fully functional system, there are several
design limitations that reduce the benefit of the FPGA
acceleration and unduly burden the CPU. In this design the
CPU is forced to compute the average and the log2
conversion of each template before running a single
correlation in the FPGA. The averaging and log2
conversion of the template could be done on the fly in the
FPGA without significant additional resources. Also,
additional logic could be added to run all of the correlations
at once, each template correlated across its sub-window
reference image, rather than a single template match at a
time. This would improve performance and reduce CPU
interrupts. These improvements will be included in the next
version of the NCC.

8. FUTURE AND RELATED WORK

Much of the logic that applies to putting pin point landing
vision algorithms into an FPGA also apply to putting rover
navigation algorithms into an FPGA. JPL has a significant
body of tested, functional vision algorithms implemented in
an FPGA for stereo vision processing for obstacle avoidance
and is in development on visual odometry for state
estimation. [7]

The release of the Xilinx Virtex 5 Radiation hardened and
space qualified XQR5VFX130 part is a major breakthrough
for vision based FPGA design and will enable an array of
computationally intensive tasks for space missions that
would not have been realistic previously.

As a comparison, the Mars Exploration Rover and the Mars
Science Laboratory both flew FPGA’s for the camera
control and image passing, but they were roughly 4 times
smaller and were fully consumed by the task of doing PCI
bus control and DMA between the on-board memory banks.
More critically, prior mission FPGA’s have typically been
fuse-based for radiation protection, and the Virtex 5 is

SRAM based but still flight qualified. This allows for an in-
flight reprogramming capability that JPL did not previously
use for the camera control FPGA. This means that the same
FPGA could handle acceleration of the VISINAV algorithm
during EDL and then get reprogrammed to handle
acceleration of stereo and visual odometry algorithms for
rover navigation once on the ground.

Full integration with the VISINAV software system has not
yet been completed on this task- the FPGA modules were
written with full integration in mind, but end to end testing
has not yet been done. Performance will need to be
validated for both the speed and the behavior as compared
against the software only version. Some differences in
results are expected; significant testing is needed to prove it
is within a tolerable bound of accuracy.

9. RESULTS

The resource requirements for the Homography, Feature
Detection and Normalized Cross Correlator are largely
independent of image size, features tracked or image
throughput.

Homography and NCC resource usage are dependent only
upon the kernel size used for the image computation. For
Homography kernel size is a 2x2 window and for NCC it is
a 15x15 window.

The Harris Detector uses slices to queue certain types of
image data, so slices will change with image size. Roughly

10% of slice count scales linearly with image size.

The standard build options for 512x512 are as follows:

FPGA Resource usage BRAM® | Slices*
Virtex 4L.X160 288 | 67,584
Virtex 5FX130t 576 | 40,960
Homography 0 4,255
Harris Detector 0 8,426
Normalized Cross Correlator 47 11,838
Complete System (incl. PCI

bus interface etc) 47 25,556

Throughput performance depends on image size and the
features tracked. While on previous software-only
implementations of VISINAV as few as 70 features have
been tracked, with this FPGA enhancement the features
tracked can be an order of magnitude higher.

3 BRAM is 18Kbit

* Slice count is presented in the Virtex 4 Family’s 4 input LUT reference
frame, not the Virtex 5 Family’s 6 input LUT reference frame for a 1-1
comparison

Estimated timing results (using a 32 bit, 33Mhz PCI bus and
a 66MHz FPGA clock):

(1) Time to transfer a 512x512 image one way: 3.6 ms

(2) Time to perform Feature detection using Harris
operator across descent image (512x512): 4.0ms

(3) Time to perform Homography across descent image
(512x512): 4.0ms

(4) Time to perform Normalized Correlation between one
15x15 template and a 32x32 search window: 19us

(5) Time to perform Normalized Correlation across 500
features:9.5 ms

(6) Time to transfer 512x512 rectified image back: 3.6 ms

25 ms total per frame within the FPGA. Our 1Hz target
throughput leaves 975 ms for the CPU to perform the rest of
VISINAV including (d) Fast Fourier Transform and (e)
Kalman filter state updates.

Timing testing indicates that anywhere from 1.72 seconds to
7.32 seconds could be spent on the Fast Fourier Transform
depending on map image size (1500x420 and 3000x840
pixels respectively). The FFT is thus a required addition to
future work. Once included, 1-5 Hz timing is anticipated.

Timing estimates depend upon the FPGA place and route
being able to meet a 66MHz clock requirement. 66MHz is a
conservative clock rate- max clock rate for the current
design is greater than 100MHz. Once the 66MHz clock
frequency timing is met the only variation on the 25 ms per
frame estimate is in the PCI transfer times. PCI transfer
times were measured empirically from 33MHz PCI systems
available to hand, and are conservative.

10. SUMMARY

Pin point landing in hazardous terrain can be made possible
with the addition of vision algorithms such as VISINAV,
and the use of FPGA components can reduce the
computational load on the CPU enough to enable real flight
missions.

The resource requirements of Homography, Feature
Detection and Correlation are within the limits of the
expected flight chip, the Virtex 5 FX130. The throughput
expected with the use of FPGA enhancement is in the 1-5Hz
range for Feature Tracking and 0.5 to 1Hz for Mapped
Landmark. Mapped Landmark would require the addition
of a FFT FPGA component to reach the 1-5Hz range.

The existence of similar FPGA modules being developed at
JPL to handle rover navigation once on the ground indicate
that the same Virtex 5 FPGA could serve multiple functions
during difference phases of the same mission. A common
architecture for RAM and PCI interfaces exists to increase

the code re-usability between the VISINAV FPGA code and
the rover navigation FPGA code.

ACKNOWLEDGEMENTS

The work described in this publication was performed at the
Jet Propulsion Laboratory, California Institute of
Technology, under contract from the National Aeronautics
and Space Administration. This work was developed and
matured under internal R&D programs.

The authors would like to thank Andrew Johnson, Larry
Matthies, Adnan Ansar, Anastasios Mourikis, Nikolas
Trawny, and Stergios I. Roumeliotis for their work on
designing the VISINAYV algorithm, the work from which all
of the FPGA design is derived. The authors would also like
to thank Steve Goldberg for his advice and support on
software integration.

REFERENCES

[IT] NASA, "Solar System exploration roadmap",

http://solarsystem.nasa.gov/multimedia/downloads/SSE _
RoadMap 2006_Report FC-A_opt.pdf.

[2] A. E. Johnson, A. Ansar, L. H. Matthies, N. Trawny, A. L.
Mourikis, and S. I. Roumeliotis, "A general approach to
terrain relative navigation for planetary landing," AIAA
Acrospace@Infotech Conf.,, Rohnert Park, CA, May
2007.

[3] N. Trawny, A. Mourikis, S. Roumeliotis, A. Johnson, J.
Montgomery,A. Ansar, and L. Matthies, “Coupled vision
and inertial navigation for pin-point landing,” presented at
the NASA Sci. Technol. Conf. (NSTC2007), College
Park, MD, Jun. 19-21.

[4] A. 1. Mourikis, N. Trawny, S. 1. Roumeliotis, A. E.
Johnson, and L. Matthies. "Vision-Aided Inertial
Navigation for Precise Planetary Landing: Analysis and
Experiments" In Proceedings of Robotics: Science and
Systems, Atlanta, GA, June 26-30, 2007.

[S]JRoumeliotis, S., Johnson, A., and Montgomery, J. 2002.
"Augmenting inertial navigation with image-based motion
estimation". In Proc. Int'l Conf. Robotics and Automation
(ICRA 2002), pp. 4326- 4333.

[6]C. Seybold, G. Chen, P. Bellutta, A. Johnson, L. Matthies,
and S. Thurman, "Suborbital flight test of a prototype
terrain-relative navigation system,” AIAA Infotech at
Aerospace Conference, Rohnert Park, CA, May 2007.

[7]C. Villalpando, A. Morfopolous, S. Goldberg, L. Matthies,
"FPGA Implementation of Stereo Disparity with High
Throughput for Mobility Applications", IEEE Aerospace
Conference, March 5-12, 2011, Big Sky, Montana.
(expected)

[8]JR. Tsai, and T. Huang, “Estimating three-dimensional
motion parameters of a rigid planar patch”, IEEE ASSP
Vol. 29, No 6, 198]1.

[9] Tsai, R., T. Huang, and W. Zhu, “Estimating three
dimensional motion parameters of a rigid planner patch,
II: Singular Value Decomposition”, IEEE ASSP, Vol. 30,
No 4, 1982.

[10]Zhang, Z., R. Deriche, O. Faugeras, Q.T. Luong, “A
robust technique for matching two uncalibrated images
through the recovery of the unknown epipolar geometry,”
Artificial Intelligence, 78, (1995), pp. 87-119

[11]Harris, C., Stephens, M.: A combined corner and edge
detector. In: Proceedings, 4th Alvey Vision Conference.
(1988) 147-151 Manchester.

[12]Ming Z. Zhang and K. Vijayan Asari, "A hardware-
efficient high performance digital architecture for run-
time computation of normalized cross correlation,"”
WSEAS Transactions on Circuits and Systems, vol. 5, no.
9, pp. 1416-1423, September 20006.

BIOGRAPHY

Arin Morfopoulos is a member of the
Robotic Actuation and Sensing Group at the
Jet Propulsion Laboratory. He has been
active in the FPGA design and
implementation of vision algorithms on a
half dozen DoD and NASA projects. He has
been responsible for the system interfaces
and integration of the FPGA vision
algorithms on those tasks since 2007. He received a B.S. in
Electrical Engineering from UCLA.

Brandon Metz is a member of the Robotic
Actuation and Sensing Group at the Jet
Propulsion Laboratory. At JPL he has
worked in FPGA design, analog circuit
design, system level design and is currently
working on hardware testing for Mars
Science Laboratory. He earned his B.S. in
Electrical Engineering and his M.S in
Communication and Microwave Engineering from Cal Poly
Pomona.

Carlos Y. Villalpando is a Senior Member
of Technical staff in the Advanced
Computer Systems and Technologies
group at the Jet Propulsion Laboratory.
He is currently a digital designer for
advanced computing techniques for
machine vision applications in FPGAs as
well as system designer and programmer
for machine vision tasks on multicore processors. He
earned his Bachelor of Science degree in Electrical
Engineering, Computer Block at the University of Texas at
Austin in 1996 and a Master of Science in FElectrical
Engineering-VLSI at the University of Southern California
in 2003. He has been a member of the JPL community
continuously since 1993 and has worked primarily on
Technology development tasks.

Dr. Larry Matthies obtained a Ph.D. degree
in Computer Science from Carnegie Mellon
University in 1989, then moved to the Jet
Propulsion Laboratory, where he is
currently a Principal Member of Technical
Staff and supervisor of the Machine Vision
Group. His research has focused on terrain sensing and
obstacle avoidance algorithms for autonomous navigation
of robotic vehicles. At JPL, he pioneered the development of
real-time algorithms for stereo vision-based obstacle
detection and he contributed to the development of the
structured light sensor used by the Sojourner Mars rover.

He has also developed algorithms for visual motion
estimation from image sequences, 3-D scene reconstruction
from image sequences, real-time terrain classification using
multispectral imagers, and environmental mapping using
sonar and stereo vision semnsors. His group currently has
research projects on computer vision for robotic vehicles
sponsored by NASA, DARPA, and the U.S. Army, these
projects include work on navigation of Mars rovers,
asteroid and comet landers, and Earth-based robotic
vehicles for wurban and cross- country missions. He is
a member of the editorial board of the Autonomous Robots
Jjournal and an adjunct member of the Computer Science
Department at the University of Southern California. He
has also been an invited speaker at the Frontiers of
Engineering Symposium organized by the National
Academy of Engineering.

Navid Serrano was a member of the
Computer Vision group at the Jet
Propulsion Laboratory, Pasadena, CA,
during the work described in this paper.
Prior to joining JPL he was a member
of the research staff at Eastman Kodak
Company, Rochester, NY, where he
worked in the areas of image
understanding and image enhancement. His focus is on
hazard detection and analysis in orbital data for landing
site selection.

